Development of Taiwan Ground Motion Model for Crustal Earthquake

Presenter: S.H. Chao GMC TI Staff

Taiwan SSHAC Level 3 PSHA Study

Taipei, Taiwan

Content

Development Approach

- Selected Ground Motion Data
- Median Model
- Sigma Model
- Regression Approach

Model Prediction Result

- Median
- Sigma

Residual Result

- Event-Specific Residual
- Station-Specific Residual
- Record-Specific Residual

Development Approach – I

Selected Ground Motion Data

- Use most updated GM database
 - SSHAC_GM_Database_v42017.03.31
- Selection Criteria
 - PGAraw,max > 4 gal
 - Exclude events with less than 10 records
 - Exclude stations with less than 10 records
 - Exclude records from low-resolution RTD station
 - Exclude four crustal events and one subduction event
 - The estimated event terms of them show significant bias from other events
 - Exclude record with T > Tmax

Selected Ground Motion Data for Crustal Source – I

Selected Ground Motion Data for Crustal Source – II

Selected Ground Motion Data for Crustal Source – III

Selected Ground Motion Data for Subduction Source – I

Selected Ground Motion Data for Crustal Source – II

Selected Ground Motion Data for Crustal Source – III

Development Approach – II

Features of Median Model

- One equation with different source terms, different path terms but same site term for crustal and subduction source
- It is constructed by the reference spectrum at reference ground motion scenario plus different scalings including
 - Source scaling: magnitude, depth, different source types
 - Distance scaling: Rrup-based scaling to describe geometric spreading and anelastic attenuation
 - Site Scaling: linear site effect (shallow soil effect and deep soil effect) and nonlinear site effect
- Covariance matrix of model coefficients as well as function form of statistical uncertainty are developed

Development Approach – II

Reference Ground Motion Scenario

- Magnitude Mw 5.5
 - It is selected based on data rich region
- Reference Ztor
 - It is selected based on the data rich region
 - 15 km for crustal source
 - 50 km for subduction source
- Reference Rrup 0 km
 - It is selected because it will be easy to constrain the magnitude scaling
- Reference Vs30 760 m/s
- Reference Z1.0 is calculated by Vs30-Z1.0 relationship proposed by Kuo. et. al. 2016 with Vs30 760 m/s

Vs30 vs. Z1.0 Relationship in Taiwan

Development Approach – III

Reference Spectrum

- Mainshok / Aftershock
- Measured / Inferred Vs30
- Crustal
 - Strike-Slip
 - Normal / Normal Oblique
 - Revers / Reverse Oblique
- Subduction
 - Ryukyu Interface
 - Ryukyu Interface
 - Manila Interface
 - Manila Intraslab

Development Approach – IV

Magnitude Scaling for Crustal Source

- We observed a clear trend of magnitude saturation from the predicted event term of crustal source
 - A second order polynomial function form are used to describe the magnitude scaling of crustal source
- We also observed a significant change of magnitude scaling from the predicted event term of crustal source with Mw < 5.0
 - A switch on-off function form are used to adjsut the magnitude scaling for the event with Mw < 5.0
- Large magnitude scaling (Mw > 7.0) is constrained by the conditions including:
 - Ground Motion data of Chi-Chi earthquake
 - The magnitude scaling rate should be larger than zero for the crustal event with Mw < 8.0

Development Approach – IV

Magnitude Scaling for Subduction Source

- We observed from estimated event terms that the magnitude scaling of interface and intraslab events are similar
 - We use the same magnitude scaling for them with Mw < 7.1
- We can't observed the magnitude saturation phenomena from the predicted event term of subduction source
 - A first order polynomial function form are used to describe magnitude scaling
- For Mw > 7.1 event, we use the magnitude scaling of interface and intraslab events (Mw > 7.1) proposed by Zhao et. al. 2016
 - These magnitude scalings are developed by Japan GM data
 - The magnitude scaling of interface and intraslab are different for Mw > 7.1
 - These magnitude scalings are Rrup-independent for Mw > 7.1
 - Based on the reason that for a very large event, only a part of the fault contribute to the ground motion

Development Approach – V

Depth Scaling for Crustal Source

- We found that the predicted event term residual is proportional to depth within available data range (Ztor 0 to 70 km)
- We found that if the magnitude-dependent reference depth was used, the large magnitude event term will be overestimated
 - As a result, the magnitude-independent reference depth is used

Distance Scaling for Crustal Source

- We use distance scaling term of CB14 model to describe the geometric spreading the anelastic attenuation
- The addictive distance is assumed as 10 km for each period
 - This assumption is based on the observation of the Taiwan ground motion data of 4 crustal events in which distance saturation can be observed clearly while Rrup < 10 km

Development Approach – V

Depth Scaling for Subduction Source

- We observe similar depth scalings for interface and intraslab events from the estimated event terms
 - We use the same depth scalings for them
- We observed that the predicted event term residual is proportional to depth within available data range (Ztor 0 to 180 km)

Distance Scaling for Subduction Source

- We use distance scaling term of CB14 model to describe the geometric spreading the anelastic attenuation
- The addictive distance is assumed as 10 km for each period
 - This assumption is based on the observation of the Taiwan ground motion data of 4 crustal events in which distance saturation can be observed clearly while Rrup < 10 km

Estimated Event Term and Magnitude Scaling for Crustal Source

Estimated Event Term and Depth Scaling for Crustal Source

Estimated Event Term and Magnitude Scaling for Subduction Source

Estimated Event Term and Depth Scaling for Subduction Source

Development Approach – VI

Site Scaling

- Linear site effect is described by parameters Vs30 and Z1.0
- Z1.0 scaling is developed based on the difference between Z1.0 and Z1.0ref because of the high correlation between Vs30 and Z1.0
- We use the function form of nonlinear site effect model proposed by Kamai et. al. (2013)
 - Vs,lin is assumed as 760 m/s for each period
 - The coefficient b is refitted and others remain the same
- We found that the soil nonlinearity of Taiwan ground motion data is stronger in Taiwan than the NGA-West 2 ground motion data under the same rock motion
 - This maybe due to the difference of the soil profile between Taiwan and California

Development Approach – VII

Features of Sigma Model

- Model coefficients of median as well sigma including Tau, PhiS2S,
 PhiSS are determined simultaneously through regression approach
- Tau and PhiSS models are developed for crustal and subduction sources, and the same PhiS2S model are developed for crustal and subduction source
- Magnitude-dependent Tau and PhiSS models are developed
 - The break points are assumed as 4.5 and 6.5
- Mixture model consisted of two normal distribution with equal weights and different standard deviations are used to describe the probability density function of PhiSS
- Covariance matrix of model coefficients as well as function form of statistical uncertainty of sigma are developed

Development Approach – VIII

Regression method

- Consider the mixed-effect model and random truncation effect simultaneously by using two-step maximum likelihood method
 - the trigger level CWB strong motion network is PGAraw,max set equal to 0.2% full scale range
 - ~4 gal for \pm 2g instrument
 - ~2 gal for \pm 1g instrument
 - We exclude all ground motion data with PGAraw,max < 4 gal and assumed the the truncation level for PGAraw,max is 4 gal
 - The median and standard deviation of truncation level for RotD50 when PGAraw, max is 4gal are evaluated for each period
- The proposed regression approach is validated by synthetic ground motion data from assumed ground motion model

Development Approach – IX

Iterations for Nonlinear site effect model

- At beginning the ground motion prediction for rock site Sa1100 are unknown, so the iteration is necessary to derive the coefficient of nonlinear site effect model
 - Step A: Solve model coefficients without considering nonlinear site effect and derive initial Sa1100 prediction
 - Step B: Solve model coefficients considering nonlinear site effect with initial Sa1100 prediction and derive updated Sa1100 prediction
 - Step C: Repeat Step B until Sa1100 prediction for each record are converges (MSE < 10⁻⁵)

Prediction of Response Spectrum for Crustal Source

Prediction of Response Spectrum for Interface Source

Prediction of Response Spectrum for Intraslab Source

Mainshock / Aftershock Factor

Style-of-Faulting Factors

Interface / Intraslab Factor

Manila / Ryukyu Subduction Factor

Measured / Inferred Vs30 Value

Magnitude Scaling for Crustal Source

Magnitude Scaling for Interface Source

Magnitude Scaling for Intraslab Source

Distance Scaling for Crustal Source

Distance Scaling for Interface Source

Distance Scaling for Intraslab Source

Depth Scaling for Crustal Source

Depth Scaling for Subduction Source

Vs30 Scaling – Linear and Nonlinear Site Effect

Z1.0 Scaling

Tau and PhiSS Models for Crustal Source

Tau and PhiSS Models for Subduction Source

Mixture Model of PhiSS for Crustal Source

Mixture Model of PhiSS for Subduction Source

Event-Specific Residual of Crustal Source – I

Event-Specific Residual of Subduction Source – I

Event-Specific Residual of Crustal Source – II

Event-Specific Residual of Subduction Source – II

Station-Specific Residual – I

Station-Specific Residual – II

Record-Specific Residual for Crustal Source

Record-Specific Residual for Subduction Source

Thank You for Your Attention !!

Questions ?

Function Form – I

Function Form of Median

 $ln S_a = ln S_a^{ref} + S_{source} + S_{path} + S_{site,lin} + S_{site,non}$

Reference Spectrum

$$lnS_a^{ref} = E^{ref} + S^{ref}$$

$$E^{ref} = c_1F_{cr,ro} + c_2F_{cr,ss} + c_3F_{cr,no} + c_4F_{sb,inter} + c_5F_{sb,intra} + c_6F_{as} + c_7F_{manila}$$

$$S^{ref} = c_{23}F_{kuo17} + c_{24}F_{ks17} + c_{25}F_{rf}$$
Source Scaling

$$\begin{split} S_{source} &= S_{mag} + S_{Ztor} \\ S_{mag} &= S_{mag,cr} F_{cr} + S_{mag,sb} F_{sb} \\ S_{mag,cr} &= c_8 \Big(\min \left(M_w, M_{max} \right) - M_w^{ref} \Big) + c_{10} \Big(\min \left(M_w, M_{max} \right) - M_w^{ref} \Big)^2 + c_{11} (5 - M_w) u (5 - M_w) \\ S_{mag,sb} &= c_9 \Big(M_w - M_w^{ref} \Big) + c_{26} F_{inter} (M_w - M_c) u (M_w - M_c) + c_{27} F_{intra} (M_w - M_c) u (M_w - M_c) \\ S_{Ztor} &= c_{12} F_{cr} \Big(Z_{tor} - Z_{tor,cr}^{ref} \Big) + c_{13} F_{sb} \Big(Z_{tor} - Z_{tor,sb}^{ref} \Big) \end{split}$$

Function Form – II

Distance Scaling

$$S_{path} = S_{geom} + S_{anel}$$
$$S_{geom} = S_{geom,cr}F_{cr} + S_{geom,sb}F_{sb}$$

$$S_{geom,cr} = \left[c_{14} + c_{16}\left(\min\left\{M_{w}, M_{max}\right\} - M_{w}^{ref}\right)\right] ln\left(\frac{\sqrt{R_{rup}^{2} + h^{2}}}{\sqrt{(R_{rup}^{ref})^{2} + h^{2}}}\right)$$

$$S_{geom,sb} = \left[c_{15} + c_{17} \left(min \{M_w, M_c\} - M_w^{ref}\right)\right] ln \left(\frac{\sqrt{R_{rup}^2 + h^2}}{\sqrt{(R_{rup}^{ref})^2 + h^2}}\right)$$

 $S_{anel} = c_{18}F_{cr}\left(R_{rup} - R_{rup}^{ref}\right) + c_{19}F_{sb}\left(R_{rup} - R_{rup}^{ref}\right)$

Function Form – III

Site Scaling

$$\begin{split} S_{site,non} &= c_{20} u \left(V_{s30}^{ref} - V_{s30} \right) \{ -1.5 ln \left(\frac{V_{s30}}{V_{s30}^{ref}} \right) - ln \left(\hat{S}_{a1100} + 2.4 \right) + ln \left(\hat{S}_{a1100} + 2.4 \left(\frac{V_{s30}}{V_{s30}^{ref}} \right)^{1.5} \right) \} \\ S_{site,lin} &= c_{21} ln \left(\frac{V_{s30}}{V_{s30}^{ref}} \right) + c_{22} ln \left(\frac{Z_{1.0}}{Z_{1.0}^{ref}} \right) \\ Z_{1.0}^{ref} &= \exp \left(\frac{-4.08}{2} ln \left(\frac{V_{s30}^2 + 355.4^2}{1750^2 + 355.4^2} \right) \right) \end{split}$$

Function Form – IV

Function Form of Sigma

- Event-Specific Residual Term

 $\delta_{\rm e} = {\rm N}(0,\tau)$

 $\tau = \tau_{cr}F_{cr} + \tau_{sb}F_{sb}$

 $\tau_{\rm cr} = \tau_{1,\rm cr} + (\tau_{2,\rm cr} - \tau_{1,\rm cr})f(M)$

$$\tau_{sb} = \tau_{1,sb} + (\tau_{2,sb} - \tau_{1,sb})f(M)$$

 $f(M) = 0.5\{\min\{6.5, \max\{4.5, M_w\}\} - 4.5\}$

Station-Specific Residual Term

 $\delta_{\rm s} = {\rm N}(0, \phi_{s2s})$

Function Form – V

Record-Specific Residual

$$\begin{split} \delta_{\rm r} &= 0.5 {\rm N}(0, \varphi_{\rm ss}^{1}) + 0.5 {\rm N}(0, \varphi_{\rm ss}^{2}) \\ \varphi_{\rm ss}^{1} &= (1+\alpha) \big(\varphi_{\rm ss,cr} {\rm F}_{\rm cr} + \varphi_{\rm ss,sb} {\rm F}_{\rm sb} \big) \\ \varphi_{\rm ss}^{2} &= (1-\alpha) \big(\varphi_{\rm ss,cr} {\rm F}_{\rm cr} + \varphi_{\rm ss,sb} {\rm F}_{\rm sb} \big) \\ \varphi_{\rm ss,cr}^{2} &= \varphi_{\rm ss1,cr} + \big(\varphi_{\rm ss2,cr} - \varphi_{\rm ss1,cr} \big) {\rm f}({\rm M}) \\ \varphi_{\rm ss,sb}^{2} &= \varphi_{\rm ss1,sb} + \big(\varphi_{\rm ss2,sb} - \varphi_{\rm ss1,sb} \big) {\rm f}({\rm M}) \\ {\rm f}({\rm M}) &= 0.5 \{ \min\{ 6.5, \max\{ 4.5, {\rm M}_{\rm w} \} \} - 4.5 \} \end{split}$$

Ground Motion Data of Interface Source

Ground Motion Data of Intraslab Source

Rrup (km)

Ch17 Model Prediction for Chi-Chi Earthquake with/without Nonlinear Site Effect

Estimated Station Term and Vs30 Scaling

Estimated Station Term and Z1.0 Scaling

Nonlinear Site Effect Model for PGA

Mag. Dependent Depth vs. Constant Depth

GM Data of Subduction Event

10³

10²

10²

GM Data of Crustal Event

